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Abstract This paper proposes an effective algorithm for polyphonic audio-to-score alignment
that aligns a polyphonic music performance to its corresponding score. The proposed frame-
work consists of three steps: onset detection, note matching, and dynamic programming. In the
first step, onsets are detected and then onset features are extracted by applying the constant Q
transform around each onset. A similarity matrix is computed using a note-matching function
to evaluate the similarity between concurrent notes in the music score and onsets in the audio
recording. Finally, dynamic programming is used to extract the optimal alignment path in the
similarity matrix. We compared five onset detectors and three spectrum difference vectors at
selected audio onsets. The experimental results revealed that our method achieved higher
precision than did the other algorithms included for comparison. This paper also proposes an
online approach based on onset detection that can detect most notes within only 10 ms. Based
on our experimental results, this online approach outperforms all methods included for
comparison when the tolerance window is 50 ms.

Keywords Music synchronization . Audio-to-score alignment . Audio onset detection . Score
following

1 Introduction

Music synchronization or alignment in various forms has great importance for analyzing and
processing music. According to music data format (audio recordings or symbolic representa-
tions), music synchronization tasks can be divided into three main categories: audio-to-audio,
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symbolic-to-symbolic, and audio-to-symbolic [28]. Audio-to-audio alignment [42] matches a
given position in a music performance to the corresponding position in a separate audio
recording. Symbolic-to-symbolic alignment [9] seeks to indicate how each note in a piece of
music is matched to its corresponding note in the score according to the correlation between
their musical structures. Audio-to-score alignment, as its name implies, seeks to find a
mapping between an audio performance and its corresponding symbolic musical score [27,
31]; in other words, the alignment system analyzes the content of the input audio at a given
time point (i.e., an onset) and maps it to a corresponding time point on the score with a similar
musical structure (i.e., note pitch and note duration).

This paper focuses on audio-to-score alignment in polyphonic music, including audio
music with multiple instruments and audio music with unconstrained instruments (in contrast
to piano-only music in some previous studies). Generally, audio-to-score alignment can be
implemented online or offline. An online system, also known as a score follower, can be used
to align a music score to a live performance and can participate in musical interactions with
human musicians in real time for tasks such as automatic page turning [1] and computer-aided
accompaniment [34]. In addition, because score followers can link note events in a score with
time corresponding points in an audio performance, it plays an important role in score-
informed source separation tasks [7, 18]. By contrast, offline systems have no real-time
constraints, and thus the complete information of a given audio signal can be used during
the alignment process. Therefore, offline alignment usually outperforms its online counterpart.
An offline alignment system can be used to retrieve the closest matching MIDI document from
a database for an audio query [22] and enables the indexing of timestamps of an audio
recording according to the desired measure or passage in a music score [14]. Moreover, such
an alignment system provides information on performance errors and temporal deviations of
note events and thus can be used for music performance evaluation or music education.

Music alignment suffers from some well-known inherent difficulties [13, 27, 28] related to
possible mismatches between human performances and their corresponding scores. Live music
performance invariably entails certain deviations, intentional or not, from the score; for
example, musicians may seek to enrich their performance by adding ornaments or chord
variations that are not specified in the score. Another notable aspect is temporal deviation; for
example, musicians may seek to express themselves through temporal inconsistencies such as
variation in note onset note duration or tempo. Alignment is further complicated when dealing
with polyphonic music, where multiple note events occurring simultaneously can lead to
interference between harmonic series of notes, thereby increasing the difficulty of identifying
the relation between an audio segment and its corresponding score.

The standard method of audio-to-score alignment consists of three steps, namely feature
extraction, similarity calculation, and alignment. In step 1, informative features are extracted
from an audio signal to characterize the musical content, such as onset and pitch or chord. Step
2 defines a similarity function to measure the difference between features of an audio recording
and note events in the score. Step 3 uses an alignment algorithm to determine the closest match
between feature sequences and note events. Most polyphonic audio-to-score alignment algo-
rithms adopt a similar procedure to convert a symbolic score into an audio file, perform feature
extraction on the input audio recording and the converted audio piece, and then align two
sequences of features. In [30], dynamic time warping (DTW) was used to align a polyphonic
audio file to another audio file synthesized from a MIDI file. The peak structure distance,
which was derived from the spectra of the audio files, was used to measure the difference
between an audio performance and a synthesized audio specimen. A similar scheme was

Multimed Tools Appl

Author's personal copy



proposed in [14, 22] for computation of a simple 12-dimensional pitch chroma as an input
feature and alignment of the performance audio with the synthesized audio by using the DTW
approach. In [32], an exhaustive search over DTW score normalization techniques was
performed to identify the optimal method for reporting a reliable alignment confidence score.
Such dynamic-programming-based algorithms can cope with tempo fluctuation and perfor-
mance errors in musical signals. Therefore, the DTW algorithm and variants thereof are
extensively used in audio-to-score alignment systems.

Other audio-to-score alignment systems use probabilistic models to enhance performance,
such as hidden Markov models (HMMs) and conditional random field (CRF) models. These
models account for matching uncertainty to enhance performance. In such systems, the hidden
variable represents the current position in the score. Moreover, flexible transition probabilities
permit structural changes. The Viterbi algorithm is usually used to identify the optimal
alignment path in these models. For example, in [11], the hierarchical HMM was used in a
polyphonic-score-following system, with previously learned pitch templates employed for
multiple fundamental frequency matching. The CRF model has also been applied to the
audio-to-score alignment problem. In [23], the authors incorporated frame-level and
segment-level features, including chroma, onset and tempo information. Three CRF models
have been proposed for various degrees of trade-off between accuracy and complexity. These
probabilistic models generated efficient and accurate alignment techniques that can compete
favorably with DTW-based methods. More recently, a multimodal convolutional neural
network for audio-to-sheet matching [17] was proposed for offline applications; the network
matches short music audio snippets to their corresponding pixel locations in images of piano
score.

Some drawbacks of the methods proposed in the literature are summarized as follows.

a. Most audio-to-score studies [8, 11, 14, 22, 23, 30, 32, 33] have used synthesized audio
(from MIDI files or music scores) for their experiments. The major disadvantage of using
synthesized audio for audio-to-score experiments is that the musical properties of synthe-
sized audio are likely to be different from those of real-world musical audio signals. For
example, input audio clips for alignment do not always have the same timbre and
harmonic properties as synthesized ones.

b. Some studies [11, 23, 24] have adopted probabilistic models to implement the alignment
process, and these models usually require time-consuming training to fine tune their
parameters.

This paper proposes an audio-to-score alignment framework that is effective for audio
music with unconstrained instruments or multiple instruments. Such audio music poses a
greater challenge for audio-to-score alignment. Recent studies on music with unconstrained or
multiple instruments are represented by [8, 10, 33]. Carabias-Orti et al. [8] used nonnegative
matrix factorization (NMF) to decompose the spectral patterns of an input performance and
produce a divergence matrix; DTW was then used to find the minimum-cost path within the
matrix. The online version [33] of this method was subsequently submitted for Music
Information Retrieval Evaluation eXchange (MIREX)1 task; the results demonstrated that this
method outperformed all the algorithms submitted in previous years. Chen et al. [10] used

1 The Music Information Retrieval Evaluation eXchange (MIREX, http://www.music-ir.org/mirex) is an annual
evaluation campaign for MIR algorithms. Score following is one of the evaluation tasks.
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NMF to decompose harmonics around onsets of the constant Q spectrum and computed the
degree of similarity with notes in the corresponding score, thereby generating robust results for
aligning audio music with various instruments. This study compares our proposed method
with these methods in an experiment.

This paper presents an audio-to-score alignment framework with onset detection and note
matching. As shown in Fig. 1, the proposed alignment method involves three steps (onset
segmentation, note matching, and dynamic programming). A piece of audio music is input to
the onset detection system. In the note-matching block, a feature vector around each estimated
onset is compared with the notes in the corresponding music score. Finally, dynamic program-
ming is used to extract the best alignment path in the similarity matrix. By performing onset
detection first, we were able to simplify the alignment process considerably. Moreover,
consideration of the spectral variation around an onset can reduce the complexity of similarity
computation and interference from vibrato. In addition, this paper proposes a method for
converting a constant Q spectrogram into another format similar to a piano roll. This conversion
does not require synthesis fromMIDI to audio and is less likely to be influenced by instrumental
timbre. This paper discusses the effects of various onset detectors and types of spectrum
difference vectors in the experiments. The proposed algorithm outperforms the aforementioned
methods. Furthermore, we propose an online audio-to-score alignment method based on onset
detection, the feasibility and performance of which are experimentally validated. Moreover, we
propose a method for onset detector fusion. We extract features from various onset detection
functions (ODFs) and then select more reliable onsets by using a prelearned classifier. The
experimental results verify that fusion is effective and outperforms the constituted ODFs.

The remainder of this paper is organized as follows. Section 2 introduces the onset detection
methods used in our fusion method, which is described in Section 3. Section 4 presents a note-

Onset detection

Note matching

Dynamic 
programming

Music score

Music audio
detected onsets

similarity matrix

alignment path
Fig. 1 Flowchart of the proposed audio-to-score alignment algorithm. A piece of audio music audio is inputted
into onset detection system. In the note matching block, a feature vector around each estimated onset is compared
with the notes in the music score. Finally, dynamic programming is used to extract the best alignment path from
the similarity matrix
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matching algorithm used to measure the similarity between a spectrum difference vector
derived from the audio onset and a score pitch vector derived from the concurrent note-on
event in the score. Section 5 explains our dynamic programming algorithm. In Section 6, we
introduce an online alignment method based on onset detection. Section 7 describes our
experimental setup and offers a comparison with other methods, alongside detailed analysis
and discussion. Finally, Section 8 summarizes our findings and provides directions for future
research.

2 Choice of onset detection methods

Onset detection [2, 16] is a crucial preprocessing step toward high-level music processing that
involves beat tracking, song segmentation, and music transcription. An onset is usually defined
as the starting point of a sound event. Onset detection typically applies an onset detection
function (ODF) to the input audio music to generate an ODF curve that indicates onset
strength. The local maxima can then be selected from the curve as the onsets because the
ODF should have a larger value at the vicinity of an onset event. Different low-level features of
audio music can be considered for computing the ODF, including the magnitude spectrum, the
phase spectrum, and pitch. For example, spectral flux computes the temporal differences of
magnitude spectra, and phase deviation estimates the change in the instantaneous frequency in
a short-time Fourier transform frequency bin by computing the second-order temporal differ-
ences of phase angles, whereas the complex domain simultaneously considers differences in
magnitude and phase spectra.

To construct general detection functions that can detect onsets in a wider range of
audio music, machine-learning-based methods have gained popularity in recent years. In
[25], onset detection algorithms based on neural networks were first used to classify a
spectrogram of a frame as an onset or not. All winning algorithms of the MIREX audio
onset detection task in the preceding few years are based on a probabilistic model
consisting of a recurrent neural network (RNN) [20] and convolutional neural network
(CNN) [36, 37]. Their resultant onset detectors exhibit good performance for almost all
types of music.

Another promising direction for onset detection is the fusion of multiple detection methods
[15]. Duxbury et al. [19] proposed an approach combining an amplitude-based detection
method with a phase-based one. Holzapfel et al. [21] considered pitch, energy, and phase
information in parallel for the detection of pitched onsets. Tian et al. [40] investigated multiple
fusion strategies to combine existing onset detectors and provided a systematic evaluation of
all tested combinations.

This paper proposes a new fusion strategy for ODF curves. For a given onset, the
corresponding peak positions of different ODF curves may have some temporal
deviation. In addition, some ODF curves may have no peak, and the onset strengths
of different ODF curves may not be the same. Consequently, the fusion strategy in
[19, 21, 40] is not desirable because the weightings of ODF curves are difficult to
estimate. Our approach divides the peaks of ODF curves into groups that are likely to
coincide with an onset. We then extract features from each group and train a classifier
to determine whether a peak group corresponds to an onset.

In our implementation, we combine the ODFs of three onset detectors. The properties of
these detection methods are described as follows.

Multimed Tools Appl

Author's personal copy



2.1 SuperFlux

SuperFlux is an onset detection algorithm proposed in [3] that improves onset detection
accuracy in the presence of vibrato. SuperFlux is an enhanced version of common spectral
flux. It calculates the difference between two near short-time spectra and can suppress false
positive detections of music with vibrato by tracking spectral trajectories using a maximum
filter.

2.2 ComplexFlux

SuperFlux considers only the magnitude spectrogram without incorporating any phase
information. ComplexFlux [4] is derived from SuperFlux and considers local group
delay to deal with vibrato and tremolo. By incorporating phase information,
ComplexFlux can determine steady tones and accordingly suppress spurious loudness
variation. SuperFlux and ComplexFlux are the current state-of-the-art nonprobabilistic
onset detection methods according to the results of the MIREX onset detection task
from the preceding few years.

2.3 RNN

The recurrent neural network (RNN)-based method [20] incorporates an RNN alongside the
spectral magnitude and its first time derivative as input features. Because of its bidirectional
architecture, this method can model the context of an onset to detect barely discernible onsets
in complex mixes and suppress events that are erroneously considered onsets by other
algorithms.

3 Fusion method for onset detection

The fusion of multiple ODFs is based on the concept that different ODFs have different
characteristics that, if used properly, can be synergized to capture onsets of audio music in
various styles and genres. In particular, spectral flux is known to be sensitive to percussive
signals, whereas SuperFlux and ComplexFlux can robustly suppress vibrato while detecting
onsets. Moreover, ODFs of a shorter frame size are better at detecting onsets in weak and
transient signals, whereas those of a longer frame size better capture soft onsets. The
aforementioned observations indicate that a variety of ODF curves should be employed to
capture different types of onsets.

In practice, different ODFs have different characteristics, and thus determining a universal
criterion for selecting peaks as onset candidates is difficult. To automate this tuning process,
we form peak groups and use a support vector machine (SVM) to determine whether a given
peak group is a true onset. The use of multiple ODF curves alongside simple training of the
SVM is the core concept of the proposed method.

Figure 2 shows a block diagram of a simple example (used in our experiment) of the
proposed method. In this specific implementation, three onset detectors are used: the RNN
method, SuperFlux, and ComplexFlux. Peak values of ODFs are cascaded with music
harmonic/percussive (H/P) features from harmonic/percussive source separation of the input
audio. These cascaded feature vectors are then classified by the SVM to predict onsets.
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3.1 Onset detection functions and peak selection

To select the ODF curve peaks, the peak-picking method described in [3] with nearly identical
parameter settings is employed. Specifically, an ODF curve at index n, denoted ODF[n], is
selected as a peak if it fulfills these three requirements:

1. ODF n½ � ¼ max ODF n −w1 : nþ w2½ �ð Þ
2. ODF n½ � ≥ mean ODF n −w3 : nþ w4½ �ð Þ þ θ

3. n − nprevious onset > w5

The first requirement is to identify the local maximum, where w1 and w2 determine
the size of the window within which the local maximum resides. The position of the
local maximum within the window represents a possible onset. The second require-
ment is to filter out lower-intensity peaks, which are considered noise. Our approach
to fulfilling this requirement is to select the local maximum that exceeds the local
mean by a threshold θ. The parameters w2 and w4 determine the window size for
determining the local mean. The third requirement is to set the minimum interval
between adjacent onsets, which is determined by w5. The parameter values in these
three conditions are equal to the default parameter values of the program provided in
[3, 4], except for the threshold parameter θ, which can be used to control the number
of identified peaks. A lower value of θ results in more peaks being identified and thus
more false positives toward final onset detection. By contrast, a higher value of θ may
lead to more false negatives because some true onsets are not identified. In our
experiment, we selected a median low value of θ to enable selection of more peaks
and prevent rejection of any true onsets. An SVM classifier is used to make a final
decision regarding whether selected peaks are onsets.

RNN

SVM 
classifier

SuperFlux

ComplexFlux

Feature 
extraction 1

Harmonic/
percussive 
separation

Input 
audio

Feature 
extraction 2

H/P
curves

Concatenation 

ODF features

Music H/P features

0: none
1: onset

Fig. 2 Block diagram of a specific implementation of the proposed method: Peak values of ODFs of RNN,
SuperFlux and ComplexFlux are cascaded with music features from harmonic/percussive source separation of
the input audio. These feature vectors are then classified by SVM to predict onsets
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3.2 Peak grouping

After local peaks are identified from each ODF curve, peaks from all ODF curves must be
grouped based on their temporal vicinity such that a final classifier can be used to determine
whether a peak group is an onset. Let MS and NS be the time vectors of the peak locations
given by two ODF curves, and let δ be the tolerance window (50 ms in our experiments). The
peak grouping procedure described in Algorithm 1 is used to generate peak groups from the
two ODF curves.

Algorithm 1: Peak grouping

1: procedure PEAKGROUP(MS , NS, δ)

2:     i1, i2
3:     TS empty list
4:     while i1 < len(MS) and i2 < len(NS) do
5:         if abs(MS[i1] − NS[i2]) ≤ δ then

6:             insert: TS i1, i2)

7:             i1, i2 i1+1, i2+1
8:         elseif MS[i1] < NS[i2] then

9:             i1 i1+1
10:         elseif  MS[i1] > NS[i2] then

11:             i2 i2+1
12:     return TS

Notably, in our implementation, we used the average time of the grouped peaks as a
reference vector of onset time.

3.3 Feature extraction

After the peak groups have been obtained, feature extraction must be performed on the groups;
the features are then sent for SVM classification to determine whether a given peak group
represents an onset.

3.3.1 ODF features

Peaks in a group are somewhat related and usually describe the same onset event in audio
music. For each peak in a SuperFlux or ComplexFlux ODF, two features are extracted based
on the ODF’s value and local mean. These features are specified as follows (ODF[n] is a peak
at frame n of its corresponding ODF):

& ODF n½ �
& ODF n½ � −mean ODF n −w3 : nþ w4½ �ð Þ

Because a peak in an ODF represents a high probability of there being an onset at the
instant represented by the peak, the peak value ODF[n] is adopted as feature 1. Feature 2
represents the contrast between the peak and its local average; a higher contrast indicates a
higher probability of the peak being an onset. In addition, two ODFs with different frame sizes
are generated. The ODF with the shorter frame size is expected to capture more peaks as onset
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candidates, including some false positives. The ODF with the longer frame size is a smoother
curve that can better capture soft onsets. These two types of frames can leverage the strengths
of both situations and contribute to final onset detection in a complementary manner. Two
frame sizes, 46 and 92 ms, were adopted in our implementation.

For each peak in the RNN ODF, only the peak value is used as the feature because the RNN
model in [20] considers multiple frame size resolutions. Therefore, each peak group has nine
features. If some ODFs in a peak group have no peaks, the default values of the corresponding
features are set to zero. The estimated onset time is the average of all peaks in the group if the
peak group is judged to be an onset.

3.3.2 Music H/P features

Musical signals typically consist of harmonic and percussive spectral components. Harmonic
sound pertains to pitched instruments, which have a spectral structure that is horizontally
smooth in time, whereas percussive sound pertains to drum-type instruments, which have a
spectral structure that is vertically smooth in frequency. The goal of harmonic/percussive
source separation [29, 39] is to decompose a given audio signal into two harmonic sounds and
percussive sounds. Separating these two components is useful for some music information
retrieval tasks, such as melody extraction [35] and chord recognition [41].

Onset detection is particularly vulnerable to vibrato interference [3], which tends to produce
false positives. Separating musical signals into harmonic and percussive components can reduce
interference from vibrato. The spectrogram of an input audio specimen is separated into a
harmonic matrixH and percussive matrix P to obtain two curves, namelyHv and Pv, respectively,
by summingH and P along the frequency axis. These two curves are normalized to have maxima
of 1. Figure 3 presents examples of harmonic and percussive curves. Figure 3a shows the
spectrogram of an audio excerpt of a violin, and Fig. 3b shows the harmonic curve (green line)
and percussive curve (blue line) of said excerpt. The black circles on the x-axis represent the
ground truth of the onsets. The estimated onsets identified using the SuperFlux method are with
red asterisks. The figure shows that Pv has a relatively strong rising trend at some onsets, such as
1.6, 2.2, 2.4, and 2.8 s. At the onsets at 3.3 and 4.8 s, Pv has a relatively low degree of rising
strength, but the relative amplitude between Pv andHv is considerably lower than the cases of the
insertions. By contrast, thePv increase at the insertions at 0.5, 0.6, 4.0, and 4.1 s is veryminor, and
the gaps between Pv andHv are relatively large. The relative amplitude between these two curves
helps to determine whether an onset is present; for example, Pv is usually close to or greater than
Hv around an onset. In addition, Hv is larger than Pv in a vibrato segment.

(a) (b) 
Fig. 3 a Spectrogram of an audio excerpt of a violin. bHarmonic curve (green line) and percussive curve (blue
line) of the audio excerpt. The black circles on the x-axis represent the groundtruth of onsets. The estimated
onsets of SuperFlux method are labeled as red asterisks
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Assume na is the frame index of the average time of a peak group. We can then define 9
features extracted from Hv and Pv for each peak group as follows:

1. Hv[na]
2. Pv[na]

3. Hv nh½ �−Hv na½ �
nh−na ;where nh ¼ arg max

na ≤n≤naþΔn1
Hv n½ �

4.
Pv np½ �−Pv na½ �

np−na ;where np ¼ arg max
na ≤n≤naþΔn1

Pv n½ �
5. Hv[na] −mean(Hv[na − Δn0 : na])
6. Pv[na] −mean(Pv[na − Δn0 : na])
7. Hv[nh] −mean(Hv[na − Δn0 : na])
8. Pv[np] −mean(Pv[na − Δn0 : na])
9. Hv[nh] − Pv[na]

The aforementioned features represent changes in Hv and Pv around na. The first two
features are the values of Hv and Pv for onset candidate na. Features 3 and 4 are slopes of Hv
and Pv over the intervals [na, np] and [na, nh], respectively, where nh and np are the indices of
local maxima in the range [na, na + Δn1] of Hv and Pv, respectively. Features 5 to 8 are the
differences between Hv and Pv at various locations and their averages in the neighborhood.
The final feature is the amplitude difference between Hv and Pv. These harmonic and
percussive features are cascaded with their ODF features to form 18 features for each peak
group; these features are then divided into two categories of Bonset^ and Bnot onset^ by an
SVM classifier, which is described as follows.

3.4 Final classifier

An SVM is used as the final classifier to determine whether a given peak group corresponds to
an onset. SVMs have been proven effective classifiers because they attempt to maximize the
margin or distance of closest examples from opposite classes from the decision hyperplane
[38]. Regarding the dimensionality of the SVM input, we define nine features extracted from
ODFs and nine features extracted from Hv and Pv in each peak group. Therefore, the overall
dimension of the input to the SVM is 18. In our experiments, we used a Gaussian radial basis
function kernel, and the parameters were optimized through a grid search of cross validation
within the training set.

4 Similarity measure

After the onsets have been obtained, the note events in the score that trigger an onset according
to the spectrum of constant Q transformmust be determined. We have developed three methods
for evaluating the likelihood of notes in the score inducing spectral variation near an onset.

4.1 Modified constant Q spectrum

We define a modified constant Q spectrum (MCQS) for note matching in audio-to-score
alignment. The constant Q transform [6] is used extensively in music analysis; BQ^ refers to
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the Bquality factor,^ namely the ratio of the center frequency to its bandwidth. Thus, a constant
Q indicates that the ratio is constant for all frequency bins in the spectrum. The transform
reflects the human auditory system, where the spectral resolution is higher at lower frequencies
and the temporal resolution is higher at higher frequencies. The frequency scale of the constant
Q transform is logarithmic, and thus this method is particularly useful in music processing
because musical transposition corresponds only to the translation of frequency bins. The
Hamming window is used in our implementation. We select the Q factor in such a manner
that 12 frequency bins exist over an octave, with each bin directly corresponding to a musical
note.

The constant Q spectrum is further modified by retaining only the local maximum in the
pitch axis of the spectrogram. In addition, we limit the pitch range to that of the score. The
advantage of this modification is that it is relatively unaffected by instrumental timbre and can
reduce overtone interference.

Figure 4 shows an example of the MCQS of an audio excerpt and its corresponding score.
This excerpt is from the Bach10 dataset and contains four parts played by different instru-
ments. Figure 4a shows the MCQS of the excerpt. Each dashed vertical line represents an onset
time; these lines are labeled alphabetically at the top. Each horizontal bar is equivalent to a
fundamental frequency or an overtone of a tone in the audio excerpt. Figure 4b is the piano-roll
plot of the corresponding music score. Each horizontal red bar represents a note, with its height
denoting the note pitch and its length denoting the note duration. Each dashed vertical line is
the time point of note-on events; these lines are labeled alphabetically at the top. The same
letters in Fig. 4a and b represent a time mapping in audio-to-score alignment; that is, timings
A–U in Fig. 4a correspond to the same letters in Fig. 4b. In this example, the note duration and
note onset of the performance deviates considerably from the score. The durations are 11 and
10 s in Fig. 4a and b, respectively, indicating that the speed of the performance is relatively
slow. In addition, because of temporal deviation in the human performance, the time interval of
the label is not as stable as that in the score. Despite these minor inconsistences, however, the
musical structures are very similar at all corresponding points labeled alphabetically in the
figure. Our proposed method for establishing their note correspondences is described in the
following section.

4.2 Note-matching method

When computing similarity, the influence of overtones must be considered, as must differences
in energy distribution in the MCQS at different pitches. In our method, for each onset, the

(a) Modified constant Q spectrum (b) Piano roll

Fig. 4 a Modified constant Q spectrum of an audio excerpt. b Piano-roll plot of its corresponding score. Each
dashed vertical line means an onset time and is labeled alphabetically at the top
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frames immediately before and after the onset in the MCQS are taken. The number of frames
used cannot exceed the onset interval or the given threshold (e.g., 200 ms). Two vectors are
obtained by taking the averages of the magnitude spectrum immediately before and after an
onset i. Assuming that dAi is the difference between these two vectors, three types of spectrum
difference vectors (SDVs) ψi can be defined, as explained subsequently.

a. For the first type, we only consider the difference if it is higher than a noise threshold:

ψ1
i kð Þ ¼ dAi kð Þ; if dAi kð Þ > ϵi

0; otherwise

�
ð1Þ

where ϵi is a noise margin, which is set to 1/20 of the maximum of dAi.

b. The second type converts a vector dAi into a binary vector, in which the values greater
than noise threshold are set to 1.

ψ2
i kð Þ ¼ 1; if dAi kð Þ > ϵi

0; otherwise

�
ð2Þ

c. The third type takes the logarithm to narrow the numerical range.

ψ3
i kð Þ ¼ log dAi kð Þð Þ; if dAi kð Þ > ϵi

0; otherwise

�
ð3Þ

For comparison with the SDVs from the MCQS, we define score pitch vectors (SPVs) with
overtones for each note concurrence (i.e., notes with the same onset time) in the score. Assume
that ℊ0j is a set of note pitches in a concurrence in the score, where j is the index of the

concurrence. Here, the harmonic series of a note is accounted for by the introduction of an
overtone vectorΩ equal to [0, 12, 19, 24], which are the index differences between the note and
its overtones on the frequency axis. The elements of vector Ω correspond to the first to fourth
harmonic partials of the note because an octave is divided into 12 frequency bins. For example,
if a note has its first harmonic partial (i.e., fundamental frequency) at the first bin of the SPV, the
13th bin is its second harmonic partial, the 20th bin is its third harmonic partial, and so on.

We define overtone set ℊnj as follows:

ℊℓj ¼ ℊℓ−1j ∪ ℊ0j þ Ω ℓð Þ
� �

ð4Þ

where ∪ is the union operator. ℊ0j þ Ω ℓð Þ means that each element in the group ℊ0j must be

added Ω(n). In other words, ℊℓj is an overtone variation of ℊ0j and n stands for the number of

overtones. Because we consider 4 harmonic partials, there are 4 sets for each concurrence. We

define a score pitch vector with overtone (SPV) ϕℓ
j as a binary vector derived from the set ℊℓj.

The definition of a SPV ϕℓ
j is as follows:

ϕℓ
j kð Þ ¼ 1; if k ∈ ℊℓj

0; otherwise

�
ð5Þ

The frequency range of an SPV covers the lowest and highest note pitches in the score. The
vector length of the SPVis the same as that of the SDVin theMCQS, and the frequency bins have
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one-to-one correspondence. If the set ℊℓj contains a pitch, the corresponding index of the SPV is

set at 1, or 0 otherwise. Here, four types of overtone distributions are considered to capture
characteristics of different musical timbres from various instruments. Figure 5 shows a simple
example of SPVs. Assume that there are two notes with corresponding pitches at indices 1 and

3 at the j-th concurrence, namely ℊ0j ¼ 1; 3f g; ϕ0
j is a vector with a value 1 at indices 1 and 3. The

following operations consider the first one, two, and three overtones to obtain three sets:

ℊ1j ¼ ℊ0j∪ ℊ0j þ Ω 1ð Þ
� �

¼ 1; 3; 13; 15f g
ℊ2j ¼ ℊ1j∪ ℊ0j þ Ω 2ð Þ

� �
¼ 1; 3; 13; 15; 20; 22f g

ℊ3j ¼ ℊ2j∪ ℊ0j þ Ω 3ð Þ
� �

¼ 1; 3; 13; 15; 20; 22; 25; 27f g

ϕ1
j , ϕ

2
j and ϕ3

j then could be respectively built according to ℊ1j , ℊ
2
j and ℊ3j , as shown in the

figure. Each vector represents a possible variation of overtones for a concurrence. Our
implementation only considers 4 variants for each concurrence.

We use a correlation coefficient to measure the similarity of two vectors. For each SDV ψi

and each SPV ϕℓ
j; n ¼ 0∼3

n o
of a concurrence, their similarity is as follows:

S i; jð Þ ¼ max
ℓ¼0∼3

corr ψi;ϕ
ℓ
j

� �
ð6Þ

where the function corr(ψ1, ϕ2) returns the Pearson’s linear correlation coefficient of vectors
ψ1 and ϕ2.

Assume that M is the number of detected onsets in an audio performance and N is the
number of concurrences in a score. The complexity of constructing a similarity matrix is
O(M ×N). For a long audio file, M and N are very large, and thus they considerably increase
computation time. However, because the alignment path of audio-to-score alignment is usually
concentrated diagonally, the similarity matrix does not need to be calculated in its entirety. To

1
3

13
15

1
3

13
15

1
3

20
22

13
15

1
3

20
22

25
27

Fig. 5 An example of score pitch vectors (SPVs). ϕ0
j is a vector containing the pitch information at the

concurrence j in the score. ϕ1
j , ϕ

2
j and ϕ3

j are variants which respectively consider the first one, two, three
overtones
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reduce the amount of computation, the number of SPVs is limited for comparison with each
SDV. The pruning procedure is described in Algorithm 2.

Algorithm 2: Approach to pruning

1: procedure PRUNING:

2:     w max([ |M - N|, w0 ])

3:     for i from 0 to M-1

4:       j0 round( N / M * i)
5:        j1 min([ j0 - w, 0 ])

6:        j2 max([ j0 + w, N-1 ])

7:         for j from j1 to j2

8:           S ( i, j ) 

Algorithm 2: Approach to pruning

1: procedure PRUNING:

2:     w max([ |M - N|, w0 ])

3:     for i from 0 to M-1

4:       j0 round( N / M * i)
5:        j1 min([ j0 - w, 0 ])

6:        j2 max([ j0 + w, N-1 ])

7:         for j from j1 to j2

8:           S ( i, j ) 

The function round(x) rounds a floating-point number x to the nearest integer. The variable
w0 is a constant and is set to 5 in our implementation. After such treatment, the complexity is
reduced from O(M ×N) to O(M × |M −N|).

5 Dynamic programming

According to the aforementioned note-matching method, a similarity matrix S(i, j) can be
constructed, where i is an onset index of the input audio and j is an index of the concurrence in
the music score. Each cell in the matrix represents the similarity between an SDV and SPV.
Dynamic programming (DP) is employed to determine the path with maximum overall similarity.

D i; jð Þ ¼ max
D i−1; jð Þ
D i; j−1ð Þ

D i−1; j−1ð Þ þ S i; jð Þ þ η i; jð Þ

8<
:

9=
; ð7Þ

where η(i, j) is a local tempo coefficient. Figure 6 shows an example of audio-to-score
alignment. The matching curve was obtained for the audio used in Fig. 4. The upward-
pointing triangles on the x-axis are the detected onsets of the audio. The right-pointing
triangles on the y-axis are the positions of the concurrences in the score. The circles indicate
the ground truth. The red asterisk is a matched pair in the DP process. The black asterisks are
matched pairs back-traced from the red asterisk. The two dashed red lines are the first two
segments and m1 and m2 are their slopes, which are used to evaluate the influence of temporal
deviation. The local tempo coefficient is defined as follows:

η i; jð Þ ¼ α 1− log2
m1

m2

����
����

� �
ð8Þ

The ratio between m1 and m2 denotes the degree of tempo variation in a performance. If the
tempo of the audio is the same as that of the score, the ratio is 1 and η(i, j) is equal to α. If the
tempo varies considerably, the ratio is considerably higher than 1 and η(i, j) is decreased such
that an SDV i is less likely to match the note vector j. The parameter α is a scalar that controls
the influence of temporal deviation in the alignment process. In our experiment, we recognized
that pitch matching is more crucial than temporal matching and thus set α to 0.1.
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The alignment path is a sequence of adjacent cells, where each cell indicates a correspon-
dence between an onset in the audio performance and a concurrence in the music score. After
the accumulated similarity has been computed, the best alignment path by can be derived by
back-tracking the path with the highest accumulated value in matrix D.

6 Real-time approach

Online and offline algorithms differ in terms of the time that is required to make an alignment
decision. In real-time applications, a system must listen to music and immediately match the
music to its corresponding notes in the score. The difference between the time at which an
alignment decision is made and the estimated note onset time should be minimized. In this
paper, we propose an online algorithm with a latency of only one frame (i.e., 10 ms) in most
cases.

We created an online version of our offline method. The online method is based on onset
detection and our note-matching method to enable construction of a similarity matrix. First, the
onset detector is replaced with the online version. A state-of-the-art online onset detector [5]
based on the RNN method is used. In addition, to obtain a positive result with low latency, the
alignment process is designed to adhere to the following three conditions:

(1) Performance stability: A musician usually plays a piece of music according to tempo
markings on the corresponding score. The performance tempo does not suddenly change,
and thus predicting the next onset from previously matched onsets is possible.

(2) Performance continuity: We assume that the music is played according to the order of the
notes in the score without any significant deviation. In other words, most matched

Fig. 6 An example of audio-to-score alignment. This matching curve is the result of the audio in Fig. 4. The
circles are the groundtruth. The red asterisk is a matching pair in the dynamic programming process. The 2
dashed red lines are the first 2 segments back-traced from the red asterisk and m1 and m2 are their slopes which
are used to evaluate the influence of temporal deviation
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concurrences are continuous with the previous matched concurrence. The alignment
system should not arbitrarily skip sequential concurrences or jump to other positions in
the score.

(3) System response time: The real-time system must consider the response time. Therefore,
the computation time for the alignment process must be reduced. Our algorithm balances
precision and computation time; for each onset, only concurrences around the previous
matched concurrence are considered for predicting score position.

To meet the above conditions, Eq. (8) should be slightly modified as follows:

η i; jð Þ ¼ α 1− log2
m1

m2

����
����−Δ j

� �
; if

m1

m2
< 4

−1; otherwise

8<
: ð9Þ

We add an extra term, Δj = j − j0 − 1, where j0 is the index of the previous matched
concurrence. This term is a penalty to avoid injurious score jumps. In addition, we limit the
ratio between two adjoining tempo slopes to less than 4. Because of these simple modifications,
the new version of the accumulation matrix is less affected by score jumps and onset insertions.

Figure 7 displays a flowchart of our proposed method, which is an onset-driven system.
When an onset i is detected, the block Blocal tempo estimation^ predicts the corresponding
concurrence based on the assumption that the input audio has stable performance. The first
step is to identify the most likely concurrence j0 that is matched with the previous onset

j0 ¼ arg max
ja−Δj≤ j≤ jaþΔj

D i−1; jð Þ ð10Þ

where ja is the index of the previous matched concurrence and Δj is a tolerance window. Under
normal circumstances, the current onset i should be matched to the concurrence ja + 1 because
of performance continuity. However, because some errors always exist in onset detection and
the note-matching process, the real matched concurrence may deviate from ja + 1, and thus the
searching range ±Δj must be extended.

In the second step, a short-term back tracing is taken from the position (i − 1, j0) in the
accumulation matrix and the corresponding concurrence for the current onset i is estimated.
The formula is as follows:

j1 ¼ arg min
j0 ≤ j≤ j0þΔj

f tempo jð Þ−τ i
�� �� ð11Þ

where the function ftempo(j) predicts the corresponding onset time in the performance for the note
concurrence j. The procedure of this function contains computation of the following three variables:

(1) Local alignment path: First, we track back N steps from (i − 1, j0) in the accumulation
matrix and obtain a local alignment path. The choice of N is relative to the local tempo
variation of the audio. We set N as 5 in our experiment.

(2) Average tempo slope: We calculate the average intervals of the aligned positions of the
audio and score according to the local alignment path. The average tempo slope is the
ratio between these two average intervals.

(3) Probable onset time: Assuming that the tempo ratio at the current onset is the same as the
average tempo ratio of the local alignment path, we can estimate the corresponding onset
time of a note concurrence through linear extrapolation from the local alignment path.
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We consider the concurrences that range from j0 to j0 + Δj and select that with the smallest
gap to the current onset. If the current detected onset is an insertion, the system discards it and
waits for the next onset. A simple strategy is employed to filter out the insertion; specifically,
the ratio of the tempo slope of the current onset to the average tempo slope of the local
estimation is limited to less than 4.

The second comparison checks performance continuity. If the predicted concurrence j1 is
equal to ja + 1, the current onset i is matched to the concurrence j1; otherwise, there may be a
score jump, which would require further checking of the note pitch by using our note-matching
method. The formula is as follows:

j2 ¼ arg max
j0þ1≤ j≤ j1

S i; jð Þ ð12Þ

where S(i, j) is the similarity matrix in Eq. (6). Improving note-matching accuracy requires
reading a few frames further. In our experiments, we read an additional 40 ms of audio data
after the current onset time. The range of computation is limited in j0 + 1 and j1, and the
optimal concurrence j2 is matched to the current onset i.

To clarify our method, we provide two examples here. Figure 8a contains no score jump;
the piece of music is the same as that in Fig. 6 and is similarly labeled. The dashed vertical

Realtime onset 
detection

Music audio

Local tempo 
estimation

Onset event i

Insertion?

j1 = j0 +1?Looking-ahead 
note matching

Matched pair
(i, j1)

Matched pair
(i, j2)

No

No

Yes

= argmin
∆

−

= arg max ,

Tempo ratio  < 4

= arg max
∆ ∆

− 1,

Fig. 7 Flowchart of the proposed online audio-to-score alignment method. It is an onset-driven system. When an
onset i is detected, the block Blocal tempo estimation^ will predict the corresponding note concurrence. The block
Blooking-ahead note matching^ will determine the optimal concurrence based on the note-matching method
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magenta line represents the current detected onset timing. We estimated the score position
using Eq. (9) and traced back five steps to obtain a local alignment path, which is denoted by
black asterisks. We were then able to compute the average slope between these points and
predict the score position that corresponded to the current onset of the audio. The most likely
score position is denoted by the red diamond in Fig. 8a. We found that the estimated
concurrence index was next to the previous one, denoting that no score jump occurred in this
example. By contrast, Fig. 8b shows an example of a score jump; the estimated concurrence
index (red diamond) is far from the alignment path (black asterisks), denoting a large jump of
notes between them. If this estimated concurrence index is directly matched with the current
onset, the subsequent alignment work may be lost, resulting in incorrect output. Thus, this case
requires note matching of the nearby notes and selection of the most likely concurrence.

The decision time of our method is approximately equal to the onset time plus computation
time of the local tempo estimation, except in the case of score jump, which requires additional
audio data for note matching. Therefore, our method has a short response time. The reliability
of this method was verified in an experiment. This paper details the experiment and compares
our method with other methods.

7 Experiments

To demonstrate the performance of our proposed method and the influence of certain
parameters, we conducted a series of experiments. The main task of this study was to
verify the feasibility of the proposed alignment framework. Because our alignment method
is based on onset detection, we intended to observe how the method influences alignment
performance. In addition, we have proposed a fusion method of onset detection functions
(ODFs). Therefore, experiment 1 was designed to investigate the performance of several
onset detectors. Experiment 2 obtained results for audio-to-score alignment based on
various onset detectors; in this paper, these results are discussed alongside the effects
on final performance of various onset detectors and spectrum difference vectors. In

(a) No score jump (b) Score jump
Fig. 8 Two examples of real-time audio-to-score alignment. The vertical magenta dashed line represents current
detected onset timing. The black asterisks are the local alignment path. The red diamond is the matched score
position according to the local tempo estimation. a The estimated score position is continuous with the local
alignment path. b There is a score jump between the estimated score position and the local alignment path
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experiment 3, we verified the feasibility of the proposed online approach and compared
its performance with that of other online methods.

7.1 Datasets

The evaluation of audio-to-score alignment was performed using two datasets. Each recording
had a corresponding MIDI representation of the score. The audio files were recordings of real
music performances in 44.1-kHz 16-bit WAV format. The first dataset, Bach10 [18], consists
of 10 human-played J.S. Bach four-part chorales, with 30-s audio files sampled from real
music performances by an instrumental quartet consisting of violin, clarinet, tenor saxophone,
and bassoon. Each instrument was recorded separately. Individual recordings of the same
chorale were then mixed to create 60 duets, 40 trios, and 10 performances with four-part
polyphony. The total number of notes is approximately 13,700 and the total duration is
approximately 60 min. The second dataset, which was collected by Cont [12], has 46
recordings extracted from four distinct pieces of classical music performed in a monophonic
or slightly polyphonic manner. The total number of notes is slightly more than 4600 and the
total duration is approximately 32 min. Notably, the original human annotations in the second
dataset have larger deviation from the real onset positions, and thus the ground truth alignment
between the audio and MIDI has been relabeled. The revised labels have been released as a
public resource.2 These datasets contain a variety of musical types and tempo variation; they
are used in MIREX score following contest. Recent studies [11, 23, 24] on multi-instrumental
audio-to-score alignment have used these datasets. Therefore, these datasets were adopted to
evaluate the proposed method in the experiment of the present study.

7.2 Experiment 1: onset detection

In experiment 1, we compared the performance of the proposed method with that of four other
methods from the literature. The first was a convolutional neural network (CNN)-based
method that is the start-of-the-art detector proposed in [37], and the other three were
SuperFlux, ComplexFlux, and the RNN method, which were the constituted ODFs in our
implementation of the fusion method. We have included their results to illustrate the improve-
ment offered by the proposed fusion algorithm.

We trained our onset detector on several previously released datasets [2, 20, 21, 26]
consisting of music of a range of genres, styles, and instrumentation. We used 203 audio
excerpts with an overall duration of approximately 36 min and 10,053 onsets. For SVM
training, the full datasets were initially split into five disjunctive folds to optimize the
parameters of the proposed method based on five-fold cross validation within the training set.

For evaluation, the standard measures of precision, recall, and the F-measure were used. An
onset was considered correctly detected if a ground truth annotationwas observedwithin a tolerance
window around the predicted position. If two or more decisions were made corresponding to a
ground truth annotation within a tolerance window, only one decision was counted as a true
positive, and all other were rendered false positives. In our experiments, we selected a tolerance
window of ±50 ms, which is identical to that used in the MIREX audio onset evaluation task.

Tables 1 and 2 respectively list the experimental results for the Bach10 and Cont datasets.
The bold type indicates the best result for each measure. As shown in Table 1, the CNN

2 The revised labels of the dataset can be downloaded in https://github.com/audioscoredata/audio-to-score-label
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method had the highest precision, recall, and F-measure among all the methods. As shown in
Table 2, the fusion method had the highest precision and F-measure, whereas the CNNmethod
had the highest recall. In both tables, the fusion method had higher precision than did its
constituted ODFs—SuperFlux, ComplexFlux, and the RNN method. Although its recall was
slightly lower, overall, the F-measure was considerably improved. Notably, the improvement
of F-measure was more evident in the second dataset because that dataset contained more
monophonic music, for which features extracted from H/P curves are more helpful. Taken
together, Tables 1 and 2 indicate the effectiveness of the proposed method. Moreover, our
method is more transparent than the CNN-based method because we combine features from
three ODFs and the final classifier is an SVM. Moreover, the proposed framework is relatively
flexible, and thus the introduction of new features and new fusion methods is fairly straight-
forward; for example, we added H/P features to reduce interference from vibrato. By contrast,
the CNN employs fully connected layers for classification; this approach is difficult to
understand and generally viewed as a hard-to-interpret black box.

The onsets detected by the different methods were used in the audio-to-score alignment
experiment described as follows, where we observed the impact of the onset detector on our
alignment method.

7.3 Experiment 2: offline audio-to-score alignment

The second experiment compared the proposed algorithm with other audio-to-score alignment
methods. The evaluation metrics are based on the precision of the matched notes in the score,
which have been frequently adopted in related studies, such as [8, 10, 18, 23, 24, 33]. A note is
said to be correctly matched if its estimated onset does not deviate from the real one by more
than the specified tolerance window (e.g., 50 ms). The figure of merit used in the experiment
was piecewise precision, which is the average of the percentage of detected notes for each
recording.

The performance evaluation results for the Bach10 dataset are listed in Table 3, which
details 18 systems for evaluation. The first 3 are based on published papers, whereas the
remaining 15 are combinations from five onset detectors and three SDVs. RB is derived from
Dannenberg’s algorithm [22], which uses chroma features and DTWalignment; this algorithm

Table 1 Onset detection results in
BACH10 dataset

The bold types indicate the best
result for each measure

Method P (%) R (%) F (%)

SuperFlux 57.08 82.28 67.20
ComplexFlux 56.73 82.72 67.12
RNN 54.96 82.14 65.62
CNN 59.33 83.38 69.10
Fusion (proposed) 59.18 82.13 68.58

Table 2 Onset detection results in
Cont dataset

The bold types indicate the best
result for each measure

Method P (%) R (%) F (%)

SuperFlux 72.39 77.06 71.62
ComplexFlux 76.48 83.66 78.54
RNN 76.36 90.30 81.97
CNN 68.15 94.38 77.78
Fusion (proposed) 85.34 87.31 85.74

The bold types indicate the best result for each measure

The bold types indicate the best result for each measure
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was chosen as a baseline in our experiment. CC is an approach that we proposed in an earlier
study [10]; in CC, an onset detector employs an RNN-based method and the similarity
measure is based on NMF to decompose note overtones. JC is one of the most recently
proposed methods [8]; it decomposes spectral patterns using learned basis functions and uses
DTW to identify the best alignment path. Notably, the results of JC were estimated from
Figure 3 in [8], and thus only two data items were included. The remaining 15 systems were
based on the proposed methods, with five onset detectors (SuperFlux, ComplexFlux, an RNN,
a CNN, and the fusion method) and three SDVs, namely SDV1, SDV2, and SDV3, which are
the three representations of SDV ψm

i in Eqs. (1), (2), and (3), respectively, in Section 4.
As shown in Table 3, four tolerance windows were used to evaluate performance. For each onset

detector with a specified tolerancewindow, the percentage in bold shows themost favorable result in
the three SDVs. For the SuperFlux, RNN, and fusion methods, SDV3 consistently outperformed
SDV1 and SDV2; for ComplexFlux andCNN, SDV2 consistently outperformed SDV1 and SDV3.
In addition, our 15 alignment systems evidently outperformedRB and CC. For comparisonwith JC,
Fig. 9 shows bar charts of the precision for the tolerance windows of 50 and 100 ms. As shown in
Fig. 9a, where the tolerance window is 50ms, except for SDV1, our systems all outperformed JC in

Table 3 Audio-to-score alignment results in BACH10 dataset

Method 25 ms (%) 50 ms (%) 75 ms (%) 100 ms (%)

RB 37.73 64.61 79.37 85.82
CC 42.99 66.47 80.75 86.98
JC NA ~74.20 NA ~90.00
SuperFlux SDV1 48.55 72.55 86.87 92.33

SDV2 50.21 74.46 88.83 94.21
SDV3 50.28 74.52 88.96 94.34

ComplexFlux SDV1 48.37 72.24 86.34 92.24
SDV2 50.91 75.28 88.74 94.21
SDV3 50.51 74.58 88.43 93.90

RNN SDV1 47.67 72.44 86.23 91.50
SDV2 48.47 73.84 87.67 92.99
SDV3 48.70 74.08 87.82 93.21

CNN SDV1 53.04 74.13 86.22 91.63
SDV2 54.29 76.19 88.17 93.41
SDV3 54.18 75.84 87.93 93.39

Fusion SDV1 49.55 73.09 86.07 91.93
SDV2 51.01 74.77 87.78 93.50
SDV3 51.03 74.97 88.11 93.75

The bold types indicate the best result for each measure

(a) Tolerance window=50 ms Tolerance window=100 ms(b) 
Fig. 9 Audio-to-score alignment results in Bach10 dataset at the two tolerance windows of (a) 50 ms and (b)
100 ms.
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all onset detectors andRNN+SDV2.As shown in Fig. 9b, when the tolerancewindowwas 100ms,
our systems consistently outperformed JC. This indicates that the proposed method is fairly robust
with respect to different onset detectors.

Notably, the F-measure of the fusion method was higher than those of its constituted onset
detectors (SuperFlux, ComplexFlux, and RNN), as shown in Table 1. However, Table 3 shows
that some precision values of the alignment systems with the fusion method were lower than
those with SuperFlux and ComplexFlux, possibly because SuperFlux and ComplexFlux have
higher recall, leading to more choices of SDVs when DP matching is performed with SPVs to
obtain better alignment. Taken as a whole, the proposed note-matching method achieves
favorable results when combined with various onset detectors.

Table 4 provides the results of our experiment on the Cont dataset. The proposed method is
compared with RB and CC only because we did not obtain results for JC with this dataset. To
improve readability, Fig. 10 shows bar charts for the tolerance windows of 50 and 100 ms. The
results of all our combinations were significantly favorable to those of RB, thereby demon-
strating the robustness of the proposed note-matching method. In addition, our proposed note-
matching method outperformed the CC method, except for the alignment systems with
SuperFlux and ComplexFlux. This is because SuperFlux and ComplexFlux did not capture
onsets sufficiently successfully in this dataset, as shown in Table 2. As for the CNN, although its
precision and F-measure are low in Table 2, it still performed well for audio-to-score alignment.
This is similar to the results of SuperFlux andComplexFlux in the Bach10 dataset, where higher
recall denoted more SDVs for better alignment. Thus, to some extent, the importance of recall is
higher than that of precision in our alignment system; however, precision must be maintained.
For instance, the fusion method had lower recall and considerably higher precision than did the
CNN, as shown in Table 2. This led to generally greater alignment for the fusion method than
for the CNN, as shown in Table 4. Furthermore, the overall performance of SDV3 was
consistently favorable to that of SDV1 and SDV2 in the Cont dataset. In summary, fusion+
SDV3 had the highest precision in all tolerance windows for this dataset.

Table 4 Audio-to-score alignment results in Cont dataset

Method 25 ms (%) 50 ms (%) 75 ms (%) 100 ms (%)

RB 43.22 63.89 71.29 74.83
CC 65.44 84.02 87.66 89.06
SuperFlux SDV1 62.09 75.89 79.88 81.41

SDV2 60.52 74.31 78.56 80.05
SDV3 62.11 76.14 80.13 81.64

ComplexFlux SDV1 69.61 82.97 86.62 88.15
SDV2 66.48 79.52 83.21 84.84
SDV3 69.49 83.08 86.80 88.27

RNN SDV1 66.53 85.29 88.97 90.57
SDV2 66.18 84.34 88.32 89.73
SDV3 68.03 86.57 89.88 91.28

CNN SDV1 73.37 86.01 88.96 90.50
SDV2 74.27 86.64 89.53 90.82
SDV3 74.71 87.70 90.66 91.86

Fusion SDV1 72.82 86.02 89.47 91.05
SDV2 73.63 86.85 90.36 91.84
SDV3 75.72 88.76 92.01 93.30

The bold types indicate the best result for each measure
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Bach10 contains polyphonic music played on multiple instruments, whereas the Cont
dataset contains more monophonic music. Although these two datasets have different proper-
ties, we observed a similar trend in both, namely that the overall performance of SDV3 was the
best in all onset detectors. In addition, the alignment results revealed a positive correlation with
the results of onset detection. To provide a more intuitive view of all methods, we merged the
results obtained using the two datasets and re-evaluated the precision of the detected notes in
tolerance window sizes ranging from 25 to 100 ms in 25 ms increments. To improve readability,
the results of SDV1 and SDV2 are not presented. The obtained results are plotted in Fig. 11. All
our systems achieved results favorable to those of the other methods included for comparison,
namely RB and CC, in all tolerance windows. CNN+SDV3 outperformed RB by 20.88% and
CC by 10.62% when the tolerance window was 25 ms. Fusion+SDV3 outperformed RB by
11.04% and CC by 6.03% when the tolerance window was 100 ms.

7.4 Experiment 3: online audio-to-score alignment

In experiment 3, Bach10 was used to evaluate the performance of the proposed score follower for
online alignment.We adopted SDV3 for computation of the similaritymatrix. Figure 12 presents our
experimental results. We compared our score follower with four reference methods. Soundprism
[18] is a system that uses a particle filter to infer the tempo and score position of each audio frame in
online mode. The algorithms ISMIRon [8], BACKspeed, and FWDspeed [33] are derived from the

(a) Tolerance window=50 ms Tolerance window=100 ms(b) 
Fig. 10 Audio-to-score alignment results in Cont dataset at the two tolerance windows of (a) 50 ms and (b)
100 ms.

Fig. 11 Experimental results based on both datasets. The first 5 are based on the proposed algorithm, which
compares favorably with the algorithms CC and RB proposed in the literature
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offline algorithm JC, which was introduced in the previous section. ISMIRon matches each
performance frame with a score position associated with the minimum value of the accumulated
cost, whereas BACKspeed and FWDspeed are two variants that estimate the DTW path in online
mode by introducing reliable onset positions.

We determined the precision of detected notes in tolerance window sizes ranging from 50 to
200 ms in 50 ms increments, as shown in Fig. 12; the proposed system obtained the best results
when the tolerance window was shorter than or equal to 100 ms. As the tolerance window was
increased, the precision improvement of our method compared with the other methods became
smaller because some onsets were falsely ignored by the employed onset detector, and thus the
corresponding notes were not recognized. Although the precision of our method was slightly lower
than that of Soundprism at tolerance window sizes of 150 and 200 ms, our method had the highest
precision at 50 and 100 ms, and had the lowest average offset of all the compared methods. In
addition, ourmethodwas able to detect 77%of all notes in 10-ms latency and 23% in 50-ms latency,
leading to an average latency of only 19.2 ms. Therefore, our method is relatively suitable for online
audio-to-score alignment. The success of this approach can be attributed to the high accuracy of our
note-matching method and the reliability of local tempo estimation.

8 Conclusions and future work

We have proposed an algorithm that aligns an audio recording of polyphonic music to
its corresponding score. The algorithm involves three steps: onset detection, similarity
computation between an SDV derived from an audio onset and an SPV derived from
the concurrent note-on event in the score, and a dynamic program to determine the
optimal alignment. We have also proposed a fusion method for onset detectors and a
note-matching method based on our MCQS. We reduce the complexity of similarity
computation and interference from vibrato by considering spectrum variation around
an onset. Our note-matching method is a direct comparison of SDVs and SPVs that is

Fig. 12 Results of online audio-to-score alignment. The proposed method produces the best precision when the
tolerance window size is less than or equal to 100 ms.
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more reliable when the timbres in the audio differ from those specified in the music
score. We implemented 15 alignment systems with combinations from five onset
detectors and three SDVs and compared them with other audio-to-score alignment
algorithms proposed in the literature. Our systems obtained higher alignment precision
than did all compared methods. Finally, we proposed an online approach based on
onset detection where musical notes can be detected within an average window of
19.2 ms. Our online version outperformed all the methods included for comparison
when the tolerance windows were 50 and 100 ms.

Although the proposed method performed favorably in the experiments, there is
still room for improvement. In future research, we will focus on improving various
aspects of the alignment algorithm. Machine learning will be used to analyze the
spectral patterns of the constant Q transform to produce a more advanced similarity
matrix. Moreover, we intend to develop a musical accompaniment system for poly-
phonic music performances to demonstrate the feasibility of the proposed algorithm.

Acknowledgments This research is partially supported by Ministry of Science and Technology, ROC, under
Grant no. MOST 104-2221-E-002-051-MY3.

Appendix

In order to make our presentation of the proposed framework clear, here we list symbols and
their definitions as follows.

– wm: The window size in frame number, where m is an integer
– θ: The thresholding parameter of the peak picking
– na: The frame index of the average time of a peak group
– Hv: The harmonic curve which derives from the harmonic component of a music

recording
– Pv: The percussive curve which derives from the percussive component of a music

recording
– np: The frame index of local maxima of Pv.
– nh: The frame index of local maxima of Hv.
– dAi: The spectrum difference around an onset i.
– ψm

i : The spectrum difference vector that derives from the spectrum difference dAi, where
m means the type of processing

– ℊℓj: The set of note pitches and overtones of a concurrence j in the score, where ℓ is the

number of overtones.
– Ω: The overtone vector
– S: The similarity matrix of the input audio and the music score
– M: The number of detected onsets in the audio
– N: The number of concurrences in the score
– η: The local tempo coefficient

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
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